Journal of Organometallic Chemistry, 363 (1989) 325-333
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands
JOM 09534

Synthesis and crystal structure of η^{3}-phosphaallyl-molybdenum and -tungsten complexes

Catherine Hugel-Le Goff, François Mercier, Louis Ricard and François Mathey *
Laboratoire de Chimie du Phosphore et des Métaux de Transition DCPH-Ecole Polytechnique, 91128 Palaiseau Cédex (France)

(Received August 22nd, 1988)

Abstract

The reaction of the (phenyl)(vinyl)chlorophosphine $\mathrm{PW}(\mathrm{CO})_{5}$ complex with $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ at $140^{\circ} \mathrm{C}$ affords, inter alia, the corresponding η^{3}-phosphaallyl $\mathrm{CpMo}(\mathrm{CO})_{2}$ complex as a mixture of two isomers. In the major isomer the $\mathrm{Mo}(\mathrm{CO})_{2}$ group is sandwiched between the phosphaallyl and cyclopentadienyl units, respectively at 2.0286 and $2.0197 \AA$. The two planes form an angle of 38°. A permutation between the $\mathrm{P}-\mathrm{Ph}$ and $\mathrm{P}-\mathrm{W}(\mathrm{CO})_{5}$ bonds is observed when comparing this η^{3}-phosphaallylmolybdenum complex with a previously described η^{3}-phosphaallyliron complex.

Similar η^{3}-phosphaallyl $\mathrm{CpW}(\mathrm{CO})_{2}$ complexes are obtained with $\mathrm{NaW}(\mathrm{CO})_{3} \mathrm{Cp}$ at $60^{\circ} \mathrm{C}$.

Introduction

In previous papers [1,2] we demonstrated that it is possible to prepare stable η^{3}-phosphaallyliron complexes such as 1 . These complexes are obtained as mixtures of two interconverting isomers 1a and 1b. This interconversion probably takes place through a transient 16 -electron $\boldsymbol{\eta}^{1}$-phosphaallyliron species 2 (eq. 1).

The existence of this type of equilibrium suggests that it should be possible to use such complexes for catalytic purposes. A tentative general scheme is proposed in eq. 2.

Of course, a requirement for the development of such catalytic processes supposes that it must be possible to adjust the relative stability of the $\mathbf{M - P}$ and $\mathrm{M}-1$ links within the η^{3}-phosphaallyl structure and to choose the metallic centre \mathbf{M} for its intrinsic ability to catalyse the A-B coupling. In view of this, we decided to study the synthesis of corresponding complexes in the chromic series.

Results and discussion

We first investigated the reaction of the chlorophosphine complex 3 [2] with $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$. As expected, it yielded, inter alia, the $\boldsymbol{\eta}^{3}$-complex as a mixture of two isomers $4 a$ and b (eq. 3).

In contrast to the result with the iron complex [1,2], in this case the most stable and abundant product is the anti isomer $\mathbf{4 b}$, in which the $\mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathbf{P}-\mathrm{W}$ dihedral angle is close to 180° and the ${ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}\right)$ coupling close to 0 Hz . The minor syn product 4 a on the other hand, in which the $\mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{P}-\mathrm{W}$ dihedral angle is close to 0°, shows a very strong ${ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}\right)$ coupling of 30.7 Hz , as expected $[1,2]$. As with the iron complexes [2], the ${ }^{2} J\left(\mathrm{CH}_{2}-P\right)$ coupling is higher for the anti $(12.2 \mathrm{~Hz})$ than for the syn isomer $(6.3 \mathrm{~Hz})$.

Table 1
Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ (Numbers in parentheses are estimated standard deviations in the least significant digits)

W-P	2.5113(7)	$\mathrm{O}(15)-\mathrm{C}(15)$	1.153(4)
W-C(16)	$2.000(4)$	$\mathrm{O}(16)-\mathrm{C}(16)$	1.137(5)
W-C(17)	2.021(4)	$\mathrm{O}(17)-\mathrm{C}(17)$	1.133(5)
W-C(18)	2.025(4)	$\mathrm{O}(18)-\mathrm{C}(18)$	1.128(5)
W-C(19)	2.045 (4)	$\mathrm{O}(19)-\mathrm{C}(19)$	$1.134(5)$
W-C(20)	2.037(4)	$O(20)-C(20)$	$1.120(5)$
Mo-P	2.5343(8)	C(1)-C(2)	$1.397(5)$
Mo-C(1)	2.251(3)	$\mathrm{C}(1)-\mathrm{H}(1)$	0.89(4)
Mo-C(2)	2.357(3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.398(5)
Mo-C(9)	2.332(4)	$C(3)-C(8)$	1.392(5)
Mo-C(10)	2.341(5)	C(4)-C(5)	$1.376(5)$
Mo-C(11)	$2.334(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.363(6)$
Mo-C(12)	$2.315(4)$	C(6)-C(7)	1.379(7)
Mo-C(13)	2.322(4)	$C(7)-C(8)$	$1.383(6)$
Mo-C(14)	$1.948(5)$	C(9)-C(10)	1.331(9)
Mo-C(15)	$1.946(4)$	C(9)-C(13)	1.391(7)
P-C(1)	1.755(3)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.40(1)
P-C(3)	1.811(3)	C(11)-C(12)	1.33(1)
$\mathrm{O}(14)-\mathrm{C}(14)$	1.156(5)	C(12)-C(13)	$1.367(8)$
P-W-C(16)	177.0(1)	P-Mo-C(14)	112.7(1)
P-W-C(17)	89.7(1)	P-Mo-C(15)	72.8(1)
P-W-C(18)	86.5(1)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	35.2(1)
P-W-C(19)	88.6(1)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(9)$	101.0(2)
P-W-C(20)	92.1(1)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(10)$	86.0(2)
$\mathrm{C}(16)-\mathrm{W}-\mathrm{C}(17)$	90.6(2)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(11)$	106.0(3)
C(16)-W-C(18)	90.5(2)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(12)$	138.8(2)
$\mathrm{C}(16)-\mathrm{W}-\mathrm{C}(19)$	91.1(2)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(13)$	135.7(2)
C(16)-W-C(20)	90.9(2)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(14)$	104.1(1)
$\mathrm{C}(17)-\mathrm{W}-\mathrm{C}(18)$	90.3(2)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(15)$	112.6(1)
$\mathrm{C}(17)-\mathrm{N}-\mathrm{C}(19)$	178.2(2)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(9)$	99.0(1)
$\mathrm{C}(17)-\mathrm{W}-\mathrm{C}(20)$	89.4(2)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(10)$	103.2(2)
$\mathrm{C}(18)-\mathrm{W}-\mathrm{C}(19)$	90.2(2)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(11)$	134.3(3)
C(18)-W-C(20)	178.6(2)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(12)$	155.7(1)
$\mathrm{C}(19)-\mathrm{W}-\mathrm{C}(20)$	90.1(2)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(13)$	125.8(2)
P-Mo-C(1)	42.51(8)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(14)$	69.9(2)
P-Mo-C(2)	66.84(9)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(15)$	114.2(1)
P-Mo-C(9)	134.4(2)	$\mathrm{C}(9)-\mathrm{Mo}-\mathrm{C}(10)$	33.1(2)
P-Mo-C(10)	105.2(2)	$\mathrm{C}(9)-\mathrm{Mo}-\mathrm{C}(11)$	56.8(2)
P-Mo-C(11)	101.1(2)	C(9)-Mo-C(12)	56.7(2)
P-Mo-C(12)	127.1(2)	C(9)-Mo-C(13)	34.8(2)
P-Mo-C(13)	157.8(2)	C(9)-Mo-C(14)	100.7(2)
C(9)-Mo-C(15)	144.9(2)	P-C(1)-C(2)	117.3(2)
C(10)-Mo-C(11)	34.7(3)	P-C(3)-C(4)	119.3(2)
$\mathrm{C}(10)-\mathrm{Mo}-\mathrm{C}(12)$	56.0(2)	$\mathrm{P}-\mathrm{C}(3)-\mathrm{C}(8)$	122.1(3)
$\mathrm{C}(10)-\mathrm{Mo}-\mathrm{C}(13)$	56.3(2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	118.5(3)
$\mathrm{C}(10)-\mathrm{Mo}-\mathrm{C}(14)$	133.4(3)	$C(3)-C(4)-C(5)$	120.4(4)
$\mathrm{C}(10)-\mathrm{Mo}-\mathrm{C}(15)$	136.8(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.9(4)
$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(12)$	33.3(3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.4(4)
$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(13)$	56.7(2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.9(4)
$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(14)$	145.3(2)	$C(3)-C(8)-C(7)$	119.8(4)
$\mathrm{C}(11)-\mathrm{Mo}-\mathrm{C}(15)$	102.2(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(13)$	107.8(5)
C(12)-Mo-C(13)	34.3(2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	109.0(5)
$\mathrm{C}(12)-\mathrm{Mo}-\mathrm{C}(14)$	113.5(3)	$C(10)-C(11)-C(12)$	106.5(6)

Table 1 (continued)

$C(12)-M o-C(15)$	$89.9(2)$	$C(11)-C(12)-C(13)$	$110.2(5)$
$C(13)-M o-C(14)$	$89.5(2)$	$C(9)-C(13)-C(12)$	$106.5(5)$
$C(13)-M o-C(15)$	$111.0(2)$	Mo-C(14)-O(14)	$178.1(4)$
$C(14)-M o-C(15)$	$81.5(2)$	Mo-C(15)-O(15)	$177.9(3)$
$W-P-M \rho$	$131.42(3)$	W-C(16)-O(16)	$177.2(4)$
W-P-C(1)	$122.3(1)$	W-C(17)-O(17)	$178.3(4)$
W-P-C(3)	$117.4(1)$	W-C(18)-O(18)	$177.4(4)$
Mo-P-C(1)	$60.1(1)$	W-C(19)-O(19)	$178.8(4)$
Mo-P-C(3)	$106.4(1)$	W-C(20)-O(20)	$178.7(5)$
$C(1)-P-C(3)$	$104.7(2)$		

These η^{3}-phosphaallylmolybdenum complexes can also be obtained from the secondary vinylphosphine complex 8 [3] (eq. 4).

(8)

In this case, the yields of $4 a$ and $\mathbf{4 b}$ are lower owing to the easier formation of the saturated side-product 6. The reduction of the vinyl bond of $8(\rightarrow 6)$ was also observed with iron [1]. Finally, it must be mentioned that the syn and anti isomers under rapid equilibration in boiling toluene (equilibrium ratio anti/syn=90/10).

The anti isomer 4b crystallizes well and we decided to carry out an X-ray diffraction study, since only syn structures have been studied with iron [1]. The overall geometry of the phosphaallyl skeleton appears to be closely similar in the molybdenum and iron cases; P-C(1): $1.755(3)$ vs. 1.761(5) $\AA, \mathrm{C}(1)-\mathrm{C}(2): 1.397(5)$ vs. $1.380(7) \AA, \mathbf{P}-\mathbf{C}(1)-C(2): 117.3(2)$ vs. $119.6(4)^{\circ}$. In each case, the carbonyls on

Fig. 1. ORTEP drawing of a molecule of $\mathbf{4 b}$. Vibrational ellipsoids are drawn to enclose 50% of the electron density. Hydrogen atoms are omitted except for $\mathbf{H C}(1)$. Principal bond distances (\AA): $\mathbf{W}-\mathbf{P}$ 2.5113(7), Mo-P 2.5343(8), P-C(1) 1.755(3), P-C(3) 1.811(3), C(1)-C(2) 1.397(5), Mo-C(1) 2.251(3), Mo-C(2) 2.357(3), Mo-C(14) 1.949(5), Mo-C(15) 1.946(4), Mo-C(Cp) 2.315(4) to 2.341(5). Selected bond angles (${ }^{\circ}$): W-P-C(1) 122.3(1), W-P-C(3) 117.4(1), W-P-Mo 131.42(3), C(1)-P-C(3) 104.7(3), $\mathrm{C}(3)-\mathrm{P}-\mathrm{Mo} \quad 106.4(1), \quad \mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2) \quad 117.3(2), \quad \mathrm{P}-\mathrm{Mo}-\mathrm{C}(14) \quad 112.7(1), \quad \mathrm{P}-\mathrm{Mo} \mathrm{C}(15) \quad 72.8(1)$, $\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(14)$ 69.9(2), C(2)-Mo-C(15) 114.2(1), C(14)-C(15) 81.5(2).
molybdenum or iron are directed towards the inside of the phosphaallyl unit. The molybdenum atom is sandwiched between the phosphaallyl and the cyclopentadienyl planes, at 2.0286 and $2.0197 \AA$, respectively from these planes. The angle between the two planes is $38.25(0.36)^{\circ}$. The main differences between the molybdenum anti and the iron syn structures are found at phosphorus. As expected, the $\mathrm{H}_{\mathrm{c}}-\mathrm{C}-\mathrm{P}-\mathrm{W}$ dihedral angle is in the present case very large (144.1(3) ${ }^{\circ}$), whereas it is very low in the iron derivative $\left(2.0^{\circ}\right)$.

The molybdenum anti structure can be related to the iron syn structure by interchanging the PPh and $\mathrm{PW}(\mathrm{CO})_{5}$ substituents at phosphorus. In the molybdenum complex, the $\mathrm{P}-\mathrm{Ph}$ bond lies practically in the plane of the phosphaallyl unit, whereas $\mathrm{W}(\mathrm{CO})_{5}$ is above this plane (opposite to molybdenum). The reverse is found for the syn iron structure, as indicated by the following data: $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{P}-\mathrm{W}=178^{\circ}(\mathrm{Fe}), 55.2^{\circ}(\mathrm{Mo}) ; \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(\mathrm{Ph})=45.6^{\circ}(\mathrm{Fe}), 191.9^{\circ}$ (Mo). The other significant data are collected in the caption of Fig. 1 and in Table 1.

We then tried to extend this chemistry to chromium and tungsten. All our experiments with chromium involving treatment of either $\mathrm{NaCr}(\mathrm{CO})_{3} \mathrm{Cp}$ or $\left[\mathrm{CpCr}(\mathrm{CO})_{3}\right]_{2}$ with 3 failed. However, we were successful with tungsten, although the yields of η^{3}-complexes were lower (eq. 5).
No reduction products similar to 6 and 7 were formed, probably because we used a lower temperature. The preference for the anti structure appeared to be even stronger then in the case of molybdenum.

This new series of experiments shows that formation of η^{3}-phosphaallyl complexes can occur with a variety of metallic centres, and that a delicate balance exists between syn and anti structures, although we are unable, at the moment, to establish what factors determine the relative stabilities of the isomers.

Experimental

All reactions were performed under argon. NMR spectra were recorded on multinuclear WP80 SY and AC 200 SY Bruker spectrometers operating at 80.13 and $200.13\left({ }^{1} \mathrm{H}\right), 20.15$ and $50.32\left({ }^{13} \mathrm{C}\right)$, and $32.44\left({ }^{31} \mathrm{P}\right) \mathrm{MHz}$; chemical shifts are in ppm downfield from internal TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) or external $85 \% \quad \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$, and coupling constants are in Hz . Mass spectra are recorded on a Shimadzu GC-MS QP 1000 instrument at 70 eV under electronic impact. Infrared spectra were obtained with a Perkin-Elmer model 297 spectrometer. Elemental analyses were performed by the Service Central de Microanalyse du CNRS, France.

General data

Chromatographic separations were carried on with silica gel columns (70-230 mesh, Merck). $\left[\mathrm{CpMo}(\mathrm{CO})_{3}\right]_{2}$ was a commercial sample used without further purification. $\mathrm{NaW}(\mathrm{CO})_{3} \mathrm{Cp}$ was obtained by reaction of $\mathrm{W}(\mathrm{CO})_{6}$ with NaCp in refluxing diglyme.

Procedure for the synthesis of:

$$
\begin{align*}
& {\left[\eta^{3}-(\mathrm{OC})_{5} \mathrm{WPPh}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)\right] \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{Cp}} \tag{4a,4b}\\
& {\left[\eta^{I}-(\mathrm{OC})_{5} W \mathrm{WPR}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)\right] \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Cp}} \tag{5}\\
& (\mathrm{OC})_{5} \mathrm{WIPhPEtHJ} \tag{6}\\
& (O C)_{4} \overline{W\left[\mu_{2}-P h P E t\right]\left(\mu_{2}-C O\right) M} O(C O)_{2} C p \tag{7}
\end{align*}
$$

A solution of $2.47 \mathrm{~g}(5 \mathrm{mmol})$ of $(\mathrm{OC})_{5} \mathrm{~W}\left[\mathrm{PhP}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{Cl}\right]$ in 10 ml of dry xylene was heated under reflux with $1.17 \mathrm{~g}(2.5 \mathrm{mmol})$ of $\left[\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Cp}\right]_{2}$ for 1.5 h . After filtration and evaporation of the solution, the residue was chromatographed. Elution with hexane gave $350 \mathrm{mg}(15 \%)$ of 6 , then with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(90 / 10)$, 240 mg (7\%) of 7 are obtained. Further elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 / 20)$ yielded, first $410 \mathrm{mg}(12 \%)$ of 4 a , second 320 mg (9%) of 5 , and third 810 mg (24%) of $\mathbf{4 b}$. Bright yellow crystals of $\mathbf{4 b}$ are readily obtained from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 / 50$).

4a; yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 1.30\left(\mathrm{~m},{ }^{2} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{s}}\right) \cong 2 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right) \cong\right.$ $\left.{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{P}\right) \cong 11 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 2.46\left(\mathrm{~m}^{3}{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{P}\right)=29.4,{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{c}}\right)=8.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}\right), 3.79$ $\left(\mathrm{m},{ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}\right)=30.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 4.65(\mathrm{~s}, \mathrm{Cp}), 6.7-7.5(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$
$43.76\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 59.29\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{P})=9.5 \mathrm{~Hz}, \mathrm{CH}\right), 92.92(\mathrm{~s}, \mathrm{Cp})$, $128.30-132.01(\mathrm{Ph}), 197.44\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=7.5 \mathrm{~Hz}\right.$, cis $\left.\mathrm{W}-\mathrm{CO}\right), 229.52\left(\mathrm{Mo}(\mathrm{CO})_{2}\right)$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-14.12,{ }^{1} J\left({ }^{31} \mathrm{P}_{-}{ }^{183} \mathrm{~W}\right)=239 \mathrm{~Hz}$; IR (decalin): $\nu(\mathrm{CO}) 2070 \mathrm{~m}$, $1980 \mathrm{~m}, 1970 \mathrm{~s}, 1945 \mathrm{vs}, 1930 \mathrm{~s}, 1905 \mathrm{~m} \mathrm{~cm}^{-1}$.

4b: yellow crystals, m.p. $223^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.54\left(\mathrm{~m},{ }^{2} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{s}}\right)\right.$ $\left.=2.3, \quad{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right)=2.1,{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{P}\right) \simeq 12 \mathrm{~Hz}, \quad \mathrm{H}_{\mathrm{a}}\right), 3.24 \quad\left(\mathrm{~m},{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{P}\right)=41.4\right.$, $\left.{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{c}}\right)=8.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}\right), 4.87\left(\mathrm{~m},{ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}\right) \approx 0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 5.10(\mathrm{~s}, \mathrm{Cp}), 7.3-7.7(\mathrm{~m}$, $\mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 41.58\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=12.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 62.38\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{P})\right.$ $=13.7 \mathrm{~Hz}, \mathrm{CH}), 94.04(\mathrm{~s}, \mathrm{Cp}), 128.76-129.71(\mathrm{Ph}), 196.74\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=9.6 \mathrm{~Hz}\right.$, cis W-CO); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-33.24,{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{183} \mathrm{~W}\right)=246.6 \mathrm{~Hz} ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\nu(\mathrm{CO}) 2065 \mathrm{~m}, 1975 \mathrm{~s}, 1945 \mathrm{vs} \mathrm{cm}{ }^{-1}$; MS (EI, $70 \mathrm{eV},{ }^{184} \mathrm{~W}$): m / z (relative intensity) 676 ($M, 31$), 480 ($M-7 \mathrm{CO}, 100$); Anal. Found: C, 35.47; H, 1.94. $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{MoO}_{7} \mathrm{PW}$ calc: C, 35.53; H, 1.94\%.

5: yellow-brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 4.45\left(\mathrm{~d},{ }^{3} J(\mathrm{P}-\mathrm{H}) \cong 0.5 \mathrm{~Hz}, \mathrm{Cp}\right), 5.45(\mathrm{~m}$, $\left.{ }^{2} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{s}}\right)=1.2,{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right)=17.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 5.64\left(\mathrm{~m},{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{c}}\right)=11.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}\right)$, $6.46\left(\mathrm{~m}, \mathrm{H}_{\mathrm{c}}\right), 7.0-7.7(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 94.97(\mathrm{~s}, \mathrm{Cp}), 126.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, 127.5-131.8 (m, Ph), 141.78 (d, ${ }^{2} J(\mathrm{C}-\mathrm{P})=13.3 \mathrm{~Hz}, \mathrm{CH}$), 199.6 (cis-W-CO); ${ }^{31} \mathrm{P}$ NMR (C6 D_{6}): $\delta-44.68,{ }^{1} J\left({ }^{31} \mathrm{P}_{-}{ }^{183} \mathrm{~W}\right)=205.1 \mathrm{~Hz}$; IR (decalin): $\nu(\mathrm{CO}) 2070 \mathrm{w}$, 2030w, 1950m.br, 1940s.br, 1920 m ,br cm ${ }^{-1}$; MS (EI, $70 \mathrm{eV},{ }^{184} \mathrm{~W}$): m / z (relative intensity) 677 ($M-\mathrm{CO}+\mathrm{H}, 8), 478(M-8 \mathrm{CO}-2 \mathrm{H}, 100)$.

6: pale pink oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.5-0.7\left(\mathrm{~m}, \mathrm{CH}_{3}\right), 1.4-1.6\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 5.08$ $\left(\mathrm{dm},{ }^{1} J(\mathrm{H}-\mathrm{P})=350.5 \mathrm{~Hz}, \mathrm{PH}\right), 6.9-7.3(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 11.75(\mathrm{~d}$, $\left.{ }^{2} J(\mathrm{C}-\mathrm{P})=4.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 23.15\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{P})=27.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 129-134(\mathrm{~m}, \mathrm{Ph})$, $196.66\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=7.2 \mathrm{~Hz}\right.$, cis $\left.\mathrm{W}-\mathrm{CO}\right), 199.45\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=20.2 \mathrm{~Hz}\right.$, trans-W-CO); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-21.6,{ }^{1} J\left({ }^{31} \mathrm{P}_{-}{ }^{183} \mathrm{~W}\right)=224.6 \mathrm{~Hz}$; IR (decalin): $\nu(\mathrm{CO}) 2070 \mathrm{~m}$, 1930-1940s.br cm ${ }^{-1}$; MS (EI, $70 \mathrm{eV},{ }^{184} \mathrm{~W}$): m / z (relative intensity) 462 ($M, 23$), 320 (M-5CO - 2H, 100).

7: dark red oil; two isomers are obtained; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.0-1.16(\mathrm{~m}$, CH_{3}), 2.5-3.5 (m, CH_{2}), 4.62 and $4.87(\mathrm{Cp}), 6.8-7.8(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): δ 12.44 and $14.12\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 32.94$ and $35.40\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{P})=23.4\right.$ and $\left.27.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, 92.40 and 93.21 (s, Cp), 127.5-143.2 (m, Ph), 198.15 and 198.84 (s, cis $\mathrm{W}-\mathrm{CO}$); ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 180.21$ and $180.96,{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{183} \mathrm{~W}\right)=195.3 \mathrm{~Hz}$; IR (decalin): $\nu(\mathrm{CO})$ $2070 \mathrm{~m}, 1975 \mathrm{~m}, 1960 \mathrm{~s} . \mathrm{br}, 1955 \mathrm{~s} . \mathrm{br}, 1880 \mathrm{w} \mathrm{cm}{ }^{-1}$; MS (EI, $70 \mathrm{eV},{ }^{184} \mathrm{~W}$): m / z (relative intensity) $678(M, 32), 478(M-7 \mathrm{CO}-2 \mathrm{H}, 100)$.

Procedure for the preparation of:

To a solution of $(\mathrm{OC})_{5} \mathrm{~W}\left[\mathrm{PhP}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{Cl}\right](2.97 \mathrm{~g}, 6 \mathrm{mmol})$ in 5 ml of dry toluene was added 17 ml of $0.52 \mathrm{M} \mathrm{NaW}(\mathrm{CO})_{3} \mathrm{Cp}(9 \mathrm{mmol})$ in diglyme. The mixture was kept at $50^{\circ} \mathrm{C}$ for 0.5 h and the solvent then removed at $60^{\circ} \mathrm{C}$ under vacuum. The crude product was washed with hexane and chromatographed. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 / 20)$ gave $50 \mathrm{mg}(1 \%)$ of 9 a , then $760 \mathrm{mg}(16 \%)$ of 10 , and with elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 / 40)$ finally gave 730 mg of 9 b .9 b crystallizes very well from hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 / 50)$.

9a: only mixture of 9 a with 9 b and 10 was available for analyses due to the low yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.26\left(\right.$ p.t, ${ }^{2} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{s}}\right)=2.9,{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right)=9.8,{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{P}\right)$
$\left.\simeq 14 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 2.89\left(\mathrm{~d}^{\star} \mathrm{d}^{\star} \mathrm{d},{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{c}}\right)=8.0,{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{P}\right)=30.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}\right), 4.05\left(\mathrm{~d}^{\star} \mathrm{d}^{\star} \mathrm{d}\right.$, $\left.{ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}\right)=29.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 5.59(\mathrm{~s}, \mathrm{Cp}), 7.2-7.7(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 92.3$ (s, Cp), 128-132 (m, Ph); ${ }^{31} \mathrm{P}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta-42.57$; IR (decalin) 2070m, $1975 \mathrm{~m}, 1945 \mathrm{~s} \mathrm{~cm}^{-1}$.

9b: yellow bright crystals, slightly soluble in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, m.p. $232^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 1.56\left(\right.$ p.t, ${ }^{2} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{s}}\right)=2.9,{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right) \cong 9,{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{P}\right) \cong 11.3 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{a}}\right), 2.99\left(\mathrm{~d}^{\star} \mathrm{d}^{\star} \mathrm{d},{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{c}}\right)=8.6,{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{P}\right)=41.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}\right), 4.42\left(\mathrm{p} . \mathrm{t},{ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}\right)=\right.$ $\left.2.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 5.22(\mathrm{~s}, \mathrm{Cp}), 7.2-7.7(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta \cong 32\left(\mathrm{CH}_{2}\right), \cong 53$ (CH), 92.8 (s, Cp), 128.8-129.6 (m, Ph), $196.8\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=7.6 \mathrm{~Hz}\right.$, cis $\left.\mathrm{W}(\mathrm{CO})_{5}\right)$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-64.17\left({ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{183} \mathrm{~W}\right)=244.1 \mathrm{~Hz}, \mathrm{~W}(\mathrm{CO})_{5}\right),{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{183} \mathrm{~W}\right)$ $\left.\cong 37 \mathrm{~Hz}, \mathrm{~W}(\mathrm{CO})_{2}\right) ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2070 \mathrm{~m}, 1990 \mathrm{w}, 1975 \mathrm{~m}, 1945 \mathrm{~s} \mathrm{~cm}{ }^{-1}$; MS (EI, $70 \mathrm{eV},{ }^{184} \mathrm{~W}$): m / z (relative intensity) 763 ($M-\mathrm{H}, 10$), 283 (100); Anal. Found: C, 31.50; H, 1.87. $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{7} \mathrm{PW}_{2}$ calc: $\mathrm{C}, 31.44 ; \mathrm{H}, 1.71 \%$.

Table 2
Positional parameters and their estimated standard deviations ${ }^{a}$

Atom	x	y	z	$B\left(\AA^{\mathbf{2}}\right)$
W	0.30307(1)	0.25292(1)	0.64419(1)	3.309(2)
Mo	0.11352(3)	$0.57213(3)$	0.80905	3.343(5)
P	0.29232(8)	0.50562(7)	0.71522(5)	2.93(1)
C(14)	-0.2011(4)	0.2949(4)	0.7664(3)	7.53(9)
O(15)	0.2370(4)	$0.3740(3)$	0.9283(2)	6.72 (7)
O(16)	0.3037(4)	-0.0633(3)	0.5395(3)	9.0(1)
O(17)	-0.0022(4)	$0.0850(4)$	0.7017(3)	8.0(1)
O(18)	0.0966(4)	0.2426(4)	0.4236(2)	7.75(9)
O(19)	0.6119(4)	0.4376(4)	0.5925(3)	8.2(1)
C(20)	0.5025(4)	0.2679(4)	0.8693(3)	9.7(1)
C(1)	0.1515(3)	0.5599(3)	0.6486(2)	3.35(6)
C(2)	-0.0047(4)	0.4594(4)	0.6241 (3)	4.03(7)
C(3)	0.4728(3)	0.6770 (3)	0.7581(2)	3.40(6)
C(4)	0.5780 (4)	0.7144(4)	0.8588(3)	4.20(7)
C(5)	$0.7144(4)$	0.8456(4)	0.8939(3)	4.99(9)
C(6)	0.7519(4)	0.9391(4)	0.8308(4)	5.4(1)
C(7)	0.6508(5)	0.9022(4)	0.7300 (3)	5.9(1)
C(8)	0.5118(4)	0.7722(4)	0.6932(3)	4.72(8)
C(9)	0.0347(5)	$0.7738(4)$	0.8294(3)	7.0(1)
C(10)	0.1814(7)	0.8347(5)	0.8281(4)	9.0(1)
C(11)	0.2781(6)	0.8215(6)	0.9162(5)	9.5(1)
C(12)	0.1864(6)	0.7542(5)	0.9702(4)	8.0(1)
C(13)	0.0348(5)	0.7221(5)	0.9196(3)	6.9(1)
C(14)	-0.0835(4)	0.3968(4)	0.7808(3)	5.09(9)
C(15)	0.1926(4)	$0.4474(4)$	0.8826(3)	4.59(7)
C(16)	$0.3057(5)$	$0.0514(4)$	0.5799(4)	5.7(1)
C(17)	$0.1073(4)$	0.1430 (4)	0.6802(3)	4.93(9)
C(18)	0.1729(4)	0.2458(4)	0.5013(3)	4.58(8)
C(19)	0.5023(4)	0.3704(4)	0.6111(3)	5.13(9)
C(20)	0.4327(5)	$0.2644(5)$	0.7896(3)	5.74(9)

${ }^{\text {a }}$ Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as:
$(4 / 3)\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)\right]$.

10: yellow solid, m.p. $145^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta 5.4$ (s, Cp$)$, 5.7 (m, $\left.{ }^{2} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{s}}\right) \cong 1 \mathrm{~Hz},{ }^{3} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{c}}\right)=17.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 5.8\left(\mathrm{~m},{ }^{3} J\left(\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{c}}\right)=11.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{s}}\right)$, $6.6\left(\mathrm{~m},{ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}\right) \cong 17.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 7.1-7.7(\mathrm{~m}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 94.3(\mathrm{~s}$, Cp), $127.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 128.5-131.3(\mathrm{~m}, \mathrm{Ph}), 141.3\left(\mathrm{~d},{ }^{1} J(\mathrm{C}-\mathrm{P})=16.0 \mathrm{~Hz}, \mathrm{CH}\right), 199.7$ $\left(\mathrm{d},{ }^{2} J(\mathrm{C}-\mathrm{P})=5.3 \mathrm{~Hz}\right.$, cis $\left.\mathrm{W}(\mathrm{CO})_{5}\right), 201.9\left(\mathrm{~d},{ }^{2} J(\mathrm{C}-\mathrm{P})=20.0 \mathrm{~Hz}\right.$, trans $\left.\mathrm{W}(\mathrm{CO})_{5}\right)$, $216.7-220.8\left(\mathrm{~W}(\mathrm{CO})_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta-75.09\left({ }^{1} J\left({ }^{31} \mathrm{P}^{183} \mathrm{~W}\right)=210.0 \mathrm{~Hz}\right.$, $\left.\mathrm{W}(\mathrm{CO})_{5}\right),\left({ }^{1} J\left({ }^{31} \mathrm{P}_{-}{ }^{183} \mathrm{~W}\right)=90.3 \mathrm{~Hz}, \mathrm{~W}(\mathrm{CO})_{3}\right)$; IR (decalin): $\nu(\mathrm{CO}) 2070 \mathrm{w}, 2020 \mathrm{w}$, 1975w, 1945-1935s, 1930-1910s cm^{-1}; MS (EI, $70 \mathrm{eV},{ }^{184} \mathrm{~W}$): m / z (relative intensity) 792 ($M, 2$), 283 (100); Anal. Found: C, 32.09; H, 1.92. $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{O}_{8} \mathrm{PW}_{2}$ calc: C, 31.85 ; H, 1.65\%.

X-Ray data collection and processing

Crystals of complex 4b are triclinic, space group $P \overline{1}$ with cell parameters a 9.653(1), b 9.699(1), c 13.417(2) $\AA, \alpha 100.42(2), \beta 102.51(2), \gamma 110.93(2)^{\circ}, V$ $1098.5(8) \AA^{3}, Z=2, d_{c} 1.86 \mathrm{~g} \mathrm{~cm}^{-3}$. A crystal fragment having dimensions of $0.3 \times 0.2 \times 0.16 \mathrm{~mm}$ was used for collection of intensity data on a Enraf-Nonius CAD4 diffractometer. Data were collected at room temperature in the $\theta / 2 \theta$ scan mode with Mo- K_{α}. A total of 6402 reflections were measured in the range $1<\theta<30$ degrees; of 5047 had $\sigma I>3 \sigma(I)$, and were used in all subsequent calculations. The crystal structure was determined by use of the Enraf-Nonius SDP structure determination package used with a Digital Equipment Micro-Vax II computer. All heavy atoms were refined using anisotropic temperature factors. Most hydrogen atom positions were determined from a final difference Fourier map and were assigned a fixed isotropic thermal parameter equal to 1.3 times the equivalent B of the attached carbon atom. The cyclopentadienyl hydrogen atoms were introduced at fixed positions and not refined. An extinction coefficient was included in the final least-squares cycles and converged to a value of $2.38(3) E-7$. The least-squares refinement converged to $R f=0.021, R w f=0.029$, unit weight agreement factor $=$ 1.08 , with $p=0.04$ in $\sigma^{2}\left(F^{2}\right)=\sigma^{2}$ counts $+(p I)^{2}$.

Positional parameters are collected in Table 2.

Supplementary material

Tables of positional parameters for hydrogens, thermal displacement parameters for heavy atoms, observed and computed structure factor amplitudes can be obtained from the authors.

References

[^0]
[^0]: 1 F. Mercier, J. Fischer and F. Mathey, Angew. Chem., Int. Ed. Engl., 25 (1986) 357.
 2 F. Mercier, C. Hugel-Le Goff and F. Mathey, Organometallics, 7 (1988) 955.
 3 F. Mercier and F. Mathey, Tetrahedron Lett., 26 (1985) 1717.

